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A Simplified Theory Of Point Kriging

And Its Extension To Co-Kriging And
Sampling Optimization,

G.P.Y. Clarke z and J.H. Dane'

INTRODUCTION

A SIMPLIFIED explanation of the linear prediction technique

of kriging was derived from a statistical point of view. The kriging techni-

que allows values of a given, spatially dependent, variate to be predicted

at points where no measurements were made. It is then possible to con-

struct a contour map for that variate. Based on the theoretically developed

equations, computer programs were written to carry out the predictions.
Besides assisting the computer user, the aim of this research was also to

point out the similarities between kriging and standard least squares, of

which it is indeed a special case.

Six computer programs were developed: (1) instead of determining a

semi-variogram to specify the spatial interdependency of a given variate,

a more general, cross-validation method was developed to determine the

range parameter as needed in the kriging equations; (2) the selected model

was then more thoroughly examined, e.g., for outliers, by yet another cross

validation program; (3) in addition to simple kriging, equations and com-

puter programs were developed for universal kriging, i.e. kriging under

a lack of stationarity; (4) these equations and programs were subsequent-

ly extended to co-kriging to improve the estimation process by using in-
formation on auxiliary variables; (5) a program was written to validate

the co-kriged model; (6) a procedure was developed to optimize sampling

schemes with the use of kriging and co-kriging, i.e., the best sampling

locations in the field and their minimum number according to preset criteria
were determined.

'The authors wish to acknowledge the following organizations for their financial support
culminating in this report: (1) The National Aeronautics and Space Administration for sup-
porting the project "Spatial and Temporal Variability of Soil Temperature, Moisture and
Surface Soil Properties" under agreement NAGW-758; (2) The Soil Conservation Service
of the United States Department of Agriculture (SCS-A-4101-12-86); and (3) The Cooperative
State Research Service of the United States Department of Agriculture through the Alabama
Agricultural Experiment Station for their support of Regional Project S-185 "Spatial and
Temporal Variability of Soil Characteristics and Material Fluxes in Field Soils."

:Professor, Department of Statistics and Biometry, University of Natal, Pietermaritzburg,
Republic of Soulh Africa.

_Professor, Department of Agronomy and Soils, Auburn University, Auburn, Alabama
36849-5412.
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The six developed computer programs were applied to data collected in

the following experiment. A 50- by 100-m field was sampled on two occa-

sions at a total of 60 locations and at five to I 1 depths to study the spatial

variability of pH, Ca, Mg, K, P, organic matter, texture, bulk density, soil

water retention, and saturated hydraulic conductivity. The programs were

written in such a manner that data sets obtained at two different times could

be combined into one for prediction purposes.

The equations developed in the theoretical sections are the same as those

used in the computer programs presented in the Appendix, with most of

the notation remaining consistent throughout.

KRIGING AS A LEAST SQUARES PROCEDURE
The Kriging Equations

Let Z denote a vector of n random variables with mean # (column
vector with n elements) and variance-covariance matrix V (size n x
n). This can be written as

_z -

It should be noted that Z denotes a vector with n observations if only
one random variable is considered, as is often done with kriging. Now
consider Z in partitioned form with vector Z, of dimension (n-l) and
vector Z2 of dimension I. Then

IZ, v- v,2 V22] '

where v/: is a covariance row and v,2 a covariance column vector.
The prediction problem is to predict Z2, denoted as 22, given a set
of observations Z, = z_. Assuming a linear model relationship among
the means, the conditional mean of Z2, given Z, = z_, is:

E(Z., [ Z, : z,) = /z2 + v,'2 V,l (z, - #,) , (1)

where z_ is a column vector containing the observed values and
E (Z: [ _Z_ = _z,) required Best Linear Unbiased Estimate (BLUE).

[::]rotNov,' suppose # = Dr? and = [d., j _ , (2)
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where the elements of the n x m matrix D are known and _ is a

m- dimensional parameter vector. The matrix D is called the design
matrix. For example, a particular case might be D = 1, a single column
of ones, in which case we have stationarity in the mean. Other models
for the mean reflect what is called "trend". The row vector, d_,

of dimension m, is that row of the design matrix which corresponds
to the random variable Z2, which depends on the location at which
an estimate will be made. The submatrix D, is that part of the design

matrix corresponding to the column vector of the observed values z,.
It should be borne in mind that any linear mean model can be used.

Assuming V to be known, the BLUE derived from equations 1 and
2 is the least squares estimate, namely:

22 = _d_/_ + _v:_V_l (z, - D,_) , (3A)

where:

= (D: V;I D,) 'D_ V;I z, (3B)

is the estimate for _. Equations 3A and 3B are the kriging equations.
When the mean model is not stationary, a drift or trend needs to be
taken into account. The process is now called "universal kriging."

Note that, if a prediction, _, is made at some point which coincides
exactly with an existing observation, zj, then, the vectors of covari-
ances for Z2 and Zjare equal. In other words, the column vector v,2
belongs to the column space of V, _. Consequently:

I Iv,2 V,, =

is a vector of zeros except for 1 in place j, and

L = + = zi

The above state of affairs, usually, referred to as the prediction "honor-
ing" the observation may not always be considered desirable. For
example, it may produce rough looking contour maps. This can be
avoided by postulating that v,2 does not belong to V,,, which is
equivalent to defining a non-zero variance, called the "nugget vari-
ance," for the difference between two observations on Z made at the
same site.

The classic reference to kriging is the book by Journel and Huij-

bregts,' where it is explained in a geological setting. The basis of their
derivation of the kriging equations is to find a function of the obser-
vations which is unbiased in estimating the conditional mean and has

'Journel, A. and C. Huijbregts. 1978. Mining Geostatistics. Academic Press, New York.



6 ALABAMA AGRICULTURAL EXPERIMENT STATION

minimum variance. For that reason, their "kriging equations" may
appear at first sight to differ from equation 3, but it is easy to prove
their equivalence.

Extension To Co-kriging

[_ _[B

where _Z,, of dimension nA, denotes a vector of variates of primary
interest and Z,, of dimension n_, a vector of co-variates. Now
suppose:

Z,, - /_ = _,,_' , V = [V(,,V_,_j (4)

it is apparent, that by proceeding exactly as for kriging, but with the
vector/_ and matrix V defined as in equation 4, there is no extra
difficulty in finding the least squares estimate of the conditional mean
of any element of Z_, using equation 3. In the simplest case, where
there is stationarity of the mean, D will have two columns with each
element 0 or I depending on whether that observed value of Z is a
primary variate or a co-variate.

It is worth mentioning that the formulation given in equation 4
allows observations to be made at any place on either the primary
variate or the co-variate; they need not be measured together or equally
frequently. It also can be seen that an extension to any number of
co-variables is simple in theory.

ESTIMATION AND VALIDATION

Moving Neighborhood Kriging and Cross-validation

In practice, when prediction is required at some point P, only those
observations within a given distance of P are used in the prediction.
This so-called "moving neighborhood," therefore, contains a speci-
fied subset of all the observations. It can be defined by requiring a
minimum number of observations (Dubrule _ recommends about 15)
or by spanning a given distance from P. The first advantage of such
a strategy is that solution of the kriging equations involves a matrix
of reasonably small dimensions. The second advantage is that prag-
matic and sensible models can be fitted to the data. For example, it
is often perfectly reasonable to fit a simple stationary mean model

'Dubrule. O. 1983. Two Methods with Different Objectives: Splines and Kriging.
Mathematical Geology Vol. 15(2):245-257.
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knowing that this in no way implies stationarity over the whole region.
Perhaps one of the most important aspects of any analysis is the

validation of the model used. We recommend cross-validation, which

is a sequential procedure whereby each datum point in turn is removed
from the set of observations and its value is then predicted by the
model based on those observations remaining. A number of criteria
can now be used to decide on the "goodness of fit" between predicted
and observed values. However, the special spatial nature of the

problem should not be ignored and it is often useful to portray the
deviations graphically. This may, e.g., illustrate poor predictions on
the edges of the map.

Another useful aspect of cross-validation is its ability as an estima-
tion technique in its own right. This matter is pursued in the next
section.

Estimation of Ihe Covariance Slruclure

The basic assumption usually made at this stage is that v,,, the
covariance between Z, and Z,, depends only on their distance apart,

d,j, and possibly on their orientation with respect to each other (e.g.,
Clark6; Journel and Huijbregts). A very simple model, and the only

one pursued here, is the spherical model which specifies that the corre-
lation between Z+ and Zj is

3 1
p.,= ! -_-(d,/eO +_-(d_j/c_) _ , d,,<

P,i = 0 , d,i > ot

where the parameter o_is called the "range." Points farther apart than

the range are uncorrelated.
The literature on spatial statistics invariably recommends that the

nature of the spatial correlation should be investigated by means of
a "semi-variogram." Suppose observations z, and zi have been made
at points a distance d,j apart. Then, if all pairs of observations that
are a distance d+, apart are collected, and if there are n,, such pairs,
it follows that:

I _(z,- zi)'
"Y"- 2n,,

where the summation is only over those pairs that are a distance d,

apart. Now, if a value 3_,,is calculated for every possible distance d+i

in the data and -_,_is plotted versus d,j, such a plot is called a semi-
variogram. Various models may be fitted through the generated data
points and their parameters estimated.

+Clark, I. 1979. Practical Geostatistics. Academic Science Publishcrs, l,ondon.
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The authors' experience with chemical and physical measurements
on soil samples suggests that typically the semi-variogram exhibits poor
structure. In addition, any effects of "drift" must be accounted for.
These considerations have motivated the authors to first consider only
the simplest model, namely, the spherical model, and second to
investigate alternative methods for the estimation of the single covar-
iance parameter a.

Consider now the dual problem of estimating c_in each given moving
neighborhood and then combining these estimates to form one global
value. Initially there is the additional problem of defining the collec-
tion of moving neighborhoods for the entire procedure. One elemen-
tary definition, and the only one pursued in this publication, is to
have one moving neighborhood centered on each observation. Given

an assumed value for c_ and a specific neighborhood with n_ obser-
vations z, possible cross-validation estimators will be considered.

Let

z, = observed value of Z. at site j

and

_., = predicted value of Z at site j for a given value of c_.

Note that this predicted value must be determined from the data set
which excludes the actual observation at site j, so it is a cross-validation
estimate. For a given value of o_

E, = Z, -Z, forj = 1 to n.

can be defined. The choice of an estimator for c_, based on the cross-
validated residuals, is difficult to justify on the grounds of a single
criterion in all situations. Among the desirable criteria to consider are
the following:

(1) minimum ]_E_ ,
(2) minimum inter-quartile range (E),

(3) minimum inter-decile range (E,), and
(4) minimum rank mean (E,).

For example, to define (4), suppose that for each site j E, is evalu-
ated for Lvalues of a (o_ = a,, a: ........ at), i.e., E,(a,) ......... Ej(at).
Rank the absolute values of the E,(a_) and then calculate the means
of these ranks.

DISCUSSION AND CONCLUSIONS

There has been a considerable upsurge of interest in spatial statis-
tics in soil science over the past decade. This reflects a growing need
by the scientific community to take into account the non-random
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nature of the distributions of variables measured at different loca-
tions. One tool which can meet many of these needs is kriging. It is

imperative, however, that the entire process of model building should
be seen as a whole. One aspect of the statistical model is the mean
structure and the other the covariance structure. In the opinion of
the authors there has been an over-emphasis on estimation of the latter.
This has led to a number of studies which dealt solely with

semi-variograms.
In this bulletin an attempt has been made to focus attention on

the predictive part of the process. How to fit a model, how to vali-
date it, and how to portray the results. Another aspect of the publi-
cation deals with the theoretical explanation from a least-squares point

of view, because this is familiar to the authors.

APPENDIX 1
DEFINITIONS AND NOTATION

DRIFT MODEL

The mean value of a spatial variate Z at some location identifed by
coordinates (x,y) may be written as mean(Z) -- #(x,y). This is the

drift model. Typical examples are:

Mean(Z) = flo (stationary model),
Mean(Z) = /3o+ /3, x + fl,y (linear drift model),
Mean(Z) = fl0 + fl, x + fl2Y + fl,, x' + fl2,Y' + fl,2xy ,

(quadratic drift model)

where flo, fl,, f12, ...are unknown parameters, denoted by the vector _ft.

DESIGN MATRIX

This matrix, denoted by D, contains the coefficients of the drift model
for all sample points. If the drift model is stationary, D consists of
a single column of ones (m = 1). If the drift model is linear, the i'h
row of D would contain the following 3 (m = 3) elements:

{ l,x,,y,}.
If the drift model is quadratic, the i_hrow of D would contain the

following 6 (m =6) elements:
2 2{l,x,y,,x_,y,,x, y, }.

The mean vector of Z is thus denoted as/_ = Dfl.

MOVING NEIGHBORHOOD

In the kriging procedure, when a prediction is required at coordinates
(x*,y*), this prediction is made (using kriging or co-kriging), based
on the nearest ng sample points to the given point. This subset of
ng points defines the neighborhood of the given point. As kriging pro-
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ceeds to predict from one point to another, the neighborhood
"moves." This procedure is analogous to the "windows" used in cal-
culating moving averages in one dimensional time series.
NEIGHBORHOOI) SIZE

Given some point with coordinates (x*,y*) we define a "neighbor-
hood" of that point as the smallest subset of all observations
Z,,i = 1 to n, such that:

(1) it contains at least the closest ng observations, and
(2) the distance from (x*,y*) to the most distant member is at
least dg.

In most applications it is safe to set dg = 0, so that neighborhoods
depend on numbers of members only. A reasonable value for ng is
12 to 15.
PREI)ICTEI) VALUF

The BLUE of Z, namely the "kriged" estimate is given in equation
3 (page 5) which is repeated here:

Z:=d:'_ + v,':v,l (_z, - D,fi)

= (D,' V,', D,) 'D,' V,'_ z_

PREI)ICTION _TANI)ARI) ERROR

If 7._denotes the predicted values of Z at location i (either predicted
by kriging or co-kriging), and if Z, is the true unknown value of Z
at this point, then the prediction SE is our estimate of:

(Variance (Z, Z)):.

The prediction standard error is a measure of the reliability of the
prediction and can be used in tests of significance and probability state-
ments. It is estimated by the following procedure: Since Z, is a linear
function of the observations _z, we may write it as:

/. = C'Z
t !

and it may be verified that

= ((d:' _,'' - _,:V,', D,) HD,' + v,'.,) V,',

where

H = (D,' V, I, D,) '

Hence it follows that:

Var (Z, - F.,) = o-'(1 - 2v/c + _c'V,,_c).

To get the prediction SE, o' must be estimated and the best quadratic
estimate is given by:
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a 2 = e'V,le/(ng - m)

where: e = Z - Dfl.

NEIGHBORHOOD VARIANCE

This quantity, referred to as a 2 above, measures the conditional vari-
ance at any point about the local mean. Within a given neighborhood

we expect it to be constant at all points. However, variation from
one neighborhood to another is expected.

LOCAL MEAN AND LOCAL SD

In a given neighborhood, the mean value of Z at the point (x*,y*),
as defined by the drift model, is called the local mean. Within the
entire given neighborhood, a constant conditional variance is assumed,
being that variance of the variate Z about its local mean. The local
SD is the square root of this variance. Naturally, the local mean and
local SD may vary from one moving neighborhood to another. In
other words, at any point (x*,y*) there is a corresponding row d*'of

the design matrix. For example, if (x*,y*) = (4,J) and we fit a linear
drift model, then: d*'= {1 4 5} and the local mean at this point is
given by # = d* ' /3. Thus, e.g., if the mean model exhibits linear
drift, all means in the neighborhood lie on the same plane. In the
absence of spatial correlation, the local mean estimate and the kriged
estimate coincide.

COVARIANCE MODEL

Given a random variable Z_ at location (x,,y,)and another Zj, at

location (xj,y), and if d_is the Euclidean distance between these two
locations, we might propose a model to describe the covariance of

Z_and Zjas a function of d_jonly. This is a simple covariance model
(said to be anisotropic).

SPHERICAL COVARIANCE MODEL

If cov(Z,,Z) = 1 - 0.J(dJc0 + 1.5(dJc_) J for d_, < _ and zero
otherwise, this is the spherical covariance model and the parameter

is called the "range."

PROBABILITY STATEMENTS

On the assumption of normality, the probability that a value of Z
at (x*,y*) should exceed some given quantity (3, may be estimated by:

_,((G- _)/a) ,

where ,I, denotes the cumulative standardized normal distribution.
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_x_z_

Fhe three columns of (x,y)-coordinates and observed values z of the
variable of primary interest (each of length n).
n

The number of observed points for the variable of primary interest.
d

The design matrix for the variable of primary interest (of dimension
nxm).

m

The number of columns of the design matrix D.
ng

The number of points in each moving neighborhood.
k

The smoothing parameter for kriging. When k = 0 the predictions
exactly honor the observations. When k = 1, maximum smoothing
takes place and a predicted value equals the local mean. Note 0
_k__l.

8

The value of the range parameter in the spherical covariance model.
X* y*

The (x,y) coordinates for the prediction points, _..

Z

The column of kriged or co-kriged predicted values with ithmember

D*

The design matrix for the prediction points.
as,ad,an

When running program AX, as = starting value for the range
parameter, ad = increment by which the value of the range parameter
is increased in the sequence; an = total number of values of the range
parameter to be tried in sequence.

The column of cross-validated predicted values. Thus _ is the
predicted value at location i when the observed value z_ is itself
deleted from the observations.
E

The n x an matrix of cross-validated residuals from program AX.

Thus if the current trial value of the range parameter is aj and this
results in a predicted value __c,for location i during cross-validations,
then eij = zi, - __ci.
Ip

The single column of cross-validated residuals produced by fitting a
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single specified model by kriging or co-kriging. Note that if program
AX was used to fit a single value of the range parameter only, then
the matrix E reduces to this single column vector.

XbYb_Zb
The (x,y)-coordinates and observed values of the covariate used in
co-kriging.

db

The design matrix for the covariate points.
ah

The value of the range parameter for the covariate.

mh

The number of columns in the covariate design matrix.

ng h

The number of points in each moving neighborhood for the covariate.
0.2

The average local variance for the primary variate.

The average local variance for the covariate.
P
The correlation between primary variate and covariate.

APPENDIX II
COMPUTER PROGRAMS 7

INTRODUCTION AND GENERAL DESCRIPTION

The suite of computer programs presented in this APPENDIX
has been written to carry out point kriging, incorporating non-

stationary means (universal kriging), and co-kriging. In addition,
there is a program SAM, which searches for the optimal locations
of sample sites. The language used is GAUSS. All programs, and
files as used in the examples, are stored on the diskette. Model fit-

ting is done by cross-validation.
The programs are not intended to be used as prescriptions, but

require interaction and understanding from the user. It is to be expected
that a user will interface analyses available here with software from
other sources. For example, to use the kriging program KRIG, the

user must supply details of his/her chosen drift model and covari-
ance parameter. Although these details can be found using program
AX, some people might prefer to use a more conventional procedure
based on variograms.

_Copies of the computer programs and the data sets as used in this bulletin will be provid-
ed on a floppy disk upon request from J.H. Dane, Department of Agronomy and Soils,
Auburn University, Auburn, Ala. 36849-5412.
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Likewise, once the program KRIG has produced a grid of predicted
values, the graphing of contours can be accomplished with any of
the user's favorite graphical packages. No graphics procedures are
given here. Perhaps a user may be interested in testing a model
produced from some other source. The program CROSSK can be used
to validate such a model.

Although users of these programs need not have knowledge of
GAUSS, such knowledge makes the file manipulation and rearrange-
ment of data infinitely easier and is strongly recommended.

MODEL LIMITATIONS

Any drift model which is linear in its unknown parameters can be
fitted. Examples are quadratic drift and multiple regression on any
co-variates whose values are known at the prediction points. Where
the covariate values have themselves to be estimated at the prediction
points, it becomes a co-kriging problem. The only covariance model
which is fitted is the spherical model. This model is expanded to han-
dle co-kriging without introducing extra parameters.

PROGRAM DESCRIPTIONS

There are six main programs, which together with supporting proce-
dures, are stored in a library called SPATIAL. Descriptions of each
program are given in Appendix tables 1 and 2.

The programs all require input to have been stored previously in
files with designated names and output is placed in named files.

Example

Water and clay content were recorded at 60 locations in a rectan-
gular field of 50 m X 100 m. Appendix figure 1 shows the layout of
the sample points and Appendix table 3 gives the raw data with their
(x,y)-coordinates. The purpose of the analysis is to produce a con-
tour map of predicted water content values. Both kriging and co-
kriging will be used. The sequence of analytic steps is shown in Ap-
pendix figure 2. A detailed description now follows. Note that all the
input files needed to run the examples are stored on diskette. Appen-
dix table 4 lists their file names.

Developing and Using a Kriging Model for Water Content
Using Program AX to Find the Best Water Model

When fitting a model to spatial data there are two aspects to con-
sider jointly. First, what model fits the drift or mean and second, what
model fits the covariance structure. We adopted the simplifying stand
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Appendix Table 3. Water and clay content at 80 cm depth at 60 locations.

Water Clay
x Y content content

m m cmVcm _ o70

0.00 0.00 0.220 15.4
6.25 0.00 0.235 19.2

12.50 0.00 0.243 17.6
18.75 0.00 0.225 17.7
25.00 0.00 0.243 17.4
37.50 0.00 0.241 17.7
10.93 3.12 0.203 13.4
17.18 3.12 0.232 18.4
23.43 3.12 0.229 17.3
29.68 3.12 0.240 17. I

6.25 6.25 0.230 18.1
34.37 6.25 0.258 19.4
17.18 9.37 0.246 21.5
12.50 12.50 0.249 20.7
25.00 12.50 0.262 25.0

7.81 15.62 0.243 19.5
3.12 18.75 0.243 21.5
4.60 21.87 0.265 19.4
0.00 25.00 0.255 19.2

12.50 25.00 0.270 22.0
18.75 25.00 0.274 24.0
25.00 25.00 ** 29.0
31.25 25.00 0.261 23.0
37.50 25.00 0.256 22.5
4.68 28.12 0.236 15.3

10.93 28.12 0.276 21.4
3.12 31.25 0.280 26.6
9.37 37.50 0.301 29.9

12.50 27.50 0.295 28.0
25.00 37.50 0.278 24.8

3.12 43.75 0.296 28.9

31.25 43.75 0.242 **
7.81 46.87 0.294 24.7

14.06 46.87 0.287 27.0
20.31 46.87 0.290 27.6

0,00 50.00 0.266 24.2
12.50 50.00 0.306 32.0
25.00 50.00 0.268 26.0
31.25 50.00 0.274 20.7
37.50 50.00 0.238 24.4

7.81 53.12 0.302 25.5
14.06 53.12 0.313 26.8
3.12 56.25 0.299 26.0

18.75 56.25 0.269 23.6
21.87 56.25 0.307 32.9
12.50 62.50 0.291 22.8
15.62 62.50 0.293 24,3
10.93 65.62 0.267 22.0
3,12 68.75 0.292 28.2

18.75 68.75 0.302 25.6
21.87 68.75 0.289 22.7
34.37 68.75 0.234 16.0

1.56 71.87 0.286 20.7
7.81 71.87 0.303 23.5

14.06 71.87 0.299 26.5
29,68 71.87 0.285 29.5

0.00 75.00 0.295 26.9
12.50 5.00 0.305 25+7
25.00 75.00 0.280 20.1
37.50 75.00 0.255 19.8

**missing data
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that the spatial correlations may be modelled by the spherical model
with a single parameter, o_, the range.

Program AX will be executed three times; first for a stationary drift,
then for a linear drift and finally for a quadratic drift model. In each
case, a range of values for c_ between 4 m and 13 m will be used,
because this represents slightly more than the minimum distance

between sample sites and the distance needed to ensure spanning a
neighborhood of 20 points respectively.
Fitting the Stationary Model

(1) Store 4 .5 19 20 0 on file TEMP__PAR.

Note that the first 3 numbers, as = 4, ad = .5, and an = 19,

e- ...... -,,_...... -_: ...... _, ....... I. ...... -_,....... O
s _ s S s S _ s S _ • s Sq,, ,,,,

• "_'. 5,.:_2:...... ;×r ...... -, _.--CJ---_2 ....... ,,- ......
• ••x s SSJ _• t SSS "•'_ s SSS •••_ s SS_ ••_• s _s_

• • •s •s

• • • • • • x • •

...... _. ...... _ ...... -_. ...... pc ...... _ ..... -I
", / n / 'C] / n / ",, / ", /

....... •_, ....... _: ...... ;_,-....... ,_,_,--©--?,

_A, • s • •,_c--z_--_:_.......7:......._-......?',.

[]........ xp........ _,,_....... ._....... _ ........ ,

....

,4--c_--,_.......N .......-'.&-......"_,......
• • •_ s S • • •# s _ • • ••

, ,, , _ •• t2, ,, _, ,, _ ,, ,,

50 m

E
o
(D

APPENDIX FIGURE1. Distribution of sample locations in the field. The circles and squares dis-
tinguish the two times that the field was sampled.
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APPENDIX FIGURE 2. A schematic diagram to illustrate the steps in kriging water content and

clay content, respectively, and co-kriging water with clay. Shaded boxes indicate steps which

do not involive SOILKRIG programs. Clear boxes involve SOILKRIG programs.
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define the range of values for a, and the next two numbers, ng = 20
and m = 0, specify the neighborhood size (a good default value) and
a stationary model, respectively.

(2) Store the matrix of values [x y z], where z represents water con-
tent, on file TEMP__AIN. There is no need to include a design matrix
since the model is stationary.

(3) Run the program by entering: RUN AX. When the execution
is complete, examine the output on file TEMP__OUT. We postpone
discussion of the output until all three drift models have been fitted.

Fitting the Linear Drift Model

(1) Amend the parameter values in file TEMP__PAR by changing
the value of m from 0 to 3, because the design matrix will now con-
tain 3 columns.

(2) Store the array [x y z D] on file TEMP__AIN. Appendix table
5 contains a partial listing of this required input. Note that in the
GAUSS language we would simply calculate.

S = x - y - z- ones (n,l) - x- y

and store S in TEMP__AIN.

(3) Run the program by entering: RUN AX. The output is filed
on the data file TEMP OUT.

Fitting the Quadratic Drift Model

(1) Change the value of m to 6 in TEMP__PAR.
(2) Calculate the elements of the quadratic design matrix D and

store [x y z D] on file TEMP__AIN. Note that the GAUSS language
command is

S = S- (x.*x) - (y.*y) - (x.*y)

assuming the old array S is retrieved first. This is now stored on
TEMP__AIN.

(3) Run the program by entering: RUN AX. The output is filed
on data file TEMP__OUT.

Interpreting the Output
There are two parts to the output from program AX. The first part

comprises the matrix of cross-validated residuals

E = {%},i = 1 to 59,j = 1 to 19

where % = the residual value for location i using the jth a-value.
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This matrix may be useful for extra analysis; for example in graphi-
cal representation.

The second part gives measures of spread for the residual values,
calculated separately for each o_-value. The program AX calculates
the following specific measures of goodness of fit for each of the 19
values for c_ considered:

(1) Rank means.
For each row of E, allocate a rank to each column element,
thereby generating a n x p matrix R of ranks. Calculate the
column means.

Appendix Table 5. The input file TEMP__AIN required for fitting a linear drift
model to water data.

water
x Y content x y

m m cm'/cm ' m m

0.000 0.000 0.221 1.000 000.000 000.000
6.250 0.000 0.235 1.000 12.500 000.000

12.500 0.000 0.243 1.000 12.500 000.000
18.750 0.000 0.225 1.1200 18.750 000.000
25.000 0.000 0.244 1.000 25.000 000.000
37.500 0.000 0.241 1.000 37.500 000.000
10.938 2.125 0.204 1.000 10.938 3.125
17.188 3.125 0.233 1.000 17.188 3.125
23.438 3.125 0.229 1.000 23.438 3.125
29.688 3.125 0.240 1.000 29.688 3.125

6.250 6.250 0.230 1.000 6.250 6.250
34.375 6.250 0.259 1.000 34.375 6.250
t 7.188 9.375 0.246 1.000 17.188 9.375

12.500 12.500 0.250 1.000 12.500 12.500
25.000 12.500 0.262 1.000 25.000 12.500

7.813 15.625 0.243 1.000 7.813 15.625
3.125 18.750 0.243 1.000 3.120 18.750
4.688 21.875 0.266 1.000 4.688 21.875
0.0(_) 25.000 0.256 1.000 0.000 25.000

141063 53:125 6.314 1".000 14:063 53:125

3.125 56.250 0.299 1.000 3.125 56.250
18.750 56.250 0.269 1.000 18.750 56.250
21.875 56.250 0.308 1.000 21.875 56.250
12.500 62.500 0.291 1.000 12.500 62.500
15.625 62.500 O. 294 1.000 15.625 62.500
10.938 65.625 0.267 1.000 10.938 65.625

3.125 68.750 0.292 1.000 3.125 68.750
18.750 68.750 0.302 1.000 18.750 68.750
21.875 68.750 0.289 1.000 21.875 68.750
34.375 68.750 0.234 1.000 34.375 68.750

1.563 71.875 0.287 1.000 1.563 71.875
7.813 71.785 0.303 1.000 7.813 71.875

14.063 71.875 0.300 1.000 14.063 71.875
29.688 71.875 0.286 1.000 29.688 71.875
0.000 75.000 0.296 1.000 0.000 75.000

12.500 75.000 0.305 1.000 12.500 75.000
25.000 75.000 0.280 1.000 25.000 75.000
37.500 75.000 0.255 1.000 37.500 75.000
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The remaining measures are standard, and each is calculated
on every column of E separately:

(2) Mean sum of squares.
(3) Mean absolute value.
(4) Inter-quartile range (IQR).

This is the difference between the 25 'hand 75 'h percentile.
(5) Inter-decile range (IDR).

This is the difference between the 90 Ih and 10 'h percentile.
Output data for the different measures of goodness of fit (second

part of program AX) are presented in Appendix table 6 when fitting
a linear model. Observe from this table that an u-value between 6

Appendix Table 6. Output of program AX when fitting a linear drift model
to water content.

c_ Rank Mean Mean i.Q.R. I.D.R.
means SS(resid) Abs(resid)

m (cm'/cm_) _ cmVcm _ cmVcm _ cm_/cm '

4.0 8.20339 0.00020 0.01163 0.01514 0.03749
4.5 8.25424 0.00020 0.01160 0.01439 0.03741
5.0 8.37288 0.00021 0.01161 0.01436 0.03779
5.5 8.37288 0.00021 0.01164 0.01450 0.03747
6.0 8.57627 0.00021 0.01165 0.01415 0.03748
6.5 8.71186 0.00021 0.01166 0.01439 0.03739
7.0 8.44068 0.00022 0.01169 0.01504 0.03697
7.5 8.40678 0.00022 0.01178 0.01597 0.03666
8.0 8.50847 0.00023 0.01192 0.01665 0.03670
8.5 8.57627 0.00024 0.01215 0.01729 0.03698
9.0 8.98305 0.00026 0.01249 0.01732 0.3760
9.5 9.42373 0.00027 0.01286 0.01783 0.03972

10.0 10.11864 0.00028 0.01325 0.01891 0.04163
10.5 10.98305 0.00029 0.01362 0.01992 0.04312
11.0 11.91525 0.00031 0.01401 0,02076 0.04420
11.5 12.79661 0.00032 0.01438 0.02125 0.04491
12.0 13.52542 0.00032 0.01464 0.02182 0.04527
12.5 13.89831 0.00033 0.01477 0.02320 0,04484
13.0 13.93220 0.00033 0.01480 0.02454 0.04421

Percentage of worst value

4.0 58.88 61.63 78.57 61.69 82.81
4.5 59.25 61.91 78.41 58.63 82.63
5.0 60.10 62.40 78.47 58.52 83.49
5.5 60.10 63.07 78.62 59.11 82.76
6.0 61.56 63.89 78.73 57.66 82.80

6.5 62.53 64.94 78.82 58.65 82.59
7.0 60.58 66.35 79.02 61.29 81.66
7.5 60.34 68.24 79.60 65.08 80.98
8.0 61.07 70.76 80.56 67.87 81.07
8.5 61.56 74.00 82.11 70.46 81.69
9.0 64.84 77.86 84.36 70.59 83.06
9.5 67.64 81.91 86.87 72.67 87.75

10.0 72.63 85.85 89.53 77.07 91.96
10.5 78.83 89.53 92.05 81.19 95.26
11.0 85.52 93.01 94.70 84.62 97.63
11.5 91.85 96.26 97.18 86.61 99.21
12.0 97.08 98.61 98.91 88.84 100,00
12.5 99.76 99.85 99.82 94.54 99.05
13.0 100.00 100.00 I00.00 100.00 97.66
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and 8.5 will optimize the IQR and IDR, which are preferred meas-
ures of spread, since they are relatively robust to outliers.

In order to compare all three drift models simultaneously, the three
outputs from program AX must be examined. Appendix table 7 sum-
marizes the results for the mean sum of squared deviations and inter-
quartile range. The linear drift model is clearly superior to the other
two. Given the linear drift model, a reasonable compromise value for
a is 6.0. Appendix figure 3 gives a graphical description of variations
in measures of spread for different o_-values. This confirms a value
for a of 6.0 as being reasonable. It is noteworthy that no single choice
of parameter values is best by every criterion.
Using Program CROSSK to Validate the Given Water Model

When a tentative model to describe spatial interdependency has been
adopted (e.g. by using the program AX), it can be more thoroughly
examined by the use of cross-validation. The process of cross-validation
for validating any given model is no different from the procedure used
by program AX in the search for a best model. The only real advan-
tage from running program CROSSK in this example is to obtain a
more detailed output. Program CROSSK uses a specified model and
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APPENDIX FIGURE 3. Measures of deviation (as % of worst value) of cross-validated residuals

using a linear drift model on soil water content.
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Appendix Table 7. Measures of deviation of cross-validated residuals for
three different drift models on water content.

_t Sum of squared deviations Inter-quartile range

m (cmVcm3) _ (cm'/cm')
s L Q s L q

4.0 0.0176 0.0120 0.0132 0.0219 0.0151 0.0182
4.5 0.0175 0.0120 0.0135 0.0207 0.0144 0.0183

5.0 0.0173 0.0121 0.0137 0.0203 0.0144 0.0184
5.5 0.0172 0.0122 0.0141 0.0207 0.0145 0.0185
6.0 0.0171 0.0124 0.0145 0.0211 0.0141 0.0184

6.5 0.0169 0.0126 0.0149 0.0220 0.0144 0.0181
7.0 0.0169 0.0129 0.0155 0.0215 0.0150 0.0175

7.5 0.0169 0.0132 0.0160 0.0197 0.0160 0.0178
8.0 0.0171 0.0137 0.0167 0.0192 0.0167 0.0192
8.5 0.0175 0.0143 0.0175 0.0191 0.0173 0.0199
9.0 0.0181 0.0151 0.0184 0.0192 0.0173 0.0206
9.5 0.0187 0.0159 0.0194 0.0189 0.0178 0.0217

10.0 0.0194 0.0166 0.0202 0.0195 0.0189 0.0226

10.5 0.0199 0.0173 0.0210 0.0201 0.0199 0.0233
! 1.0 0.0205 0.0181 0.0218 0.0211 0.0208 0.0236
11.5 0.0211 0.0186 0.0225 0.0227 0.0212 0.0241
12.0 0.0214 0.0191 0.0230 0.0242 0.0218 0.0245
12.5 0.0216 0.0194 0.0232 0.0251 0.0232 0.0247
13.0 0.0215 0.0194 0.0231 0.0256 0.0245 0.0242

S = stationary drift model, L = linear drift model, Q = quadratic drift model.

makes cross-validation predictions at each observed point. Output of
the observed values (Z), the predicted values (Z), the prediction stan-

dard errors, the local means and the local standard deviations may
be useful in the following ways:

(1) To test for suitability of the model and detection of outliers.
The ratio of (Z - Z)/(prediction SE), at any point, should follow
the t-distribution. Any values in excess of about 3 can be seriously
considered as outliers.

(2) To find an estimate of the average local variances (actually con-
ditional variances) to be used in a subsequent co-kriging program.

Assuming a linear drift model with c_ = 6, we proceed as follows:
(1) Store 6 20 3 0 in file TEMPmPAR. Note that this sequence

of values assigns o_= 6, ng = 20 (the neighborhood size adopted in all
previous analyses), m = 3 (because we are fitting a linear drift model),
and k = 0 (because we require predictions to "honor" the observations).

(2) Store Ix y z D] in TEMP.__AIN. Note that these are exactly
the same values as those used in program AX with the linear drift

model.
(3) Run program CROSSK and examine file TEMP__OUT for the

output. Part of this output is shown in Appendix table 8. The cross-
validated residuals should be stored for later use in co-kriging.

Using Program KRIG to Predict Water Content Values

Given a set of spatially oriented data, categorized by coordinates
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Appendix Table 8. Output for cross-validation of linear drift model for water content, with
parameter values a=6, ng=20, m=3, and k=0.

x y z _ prediction local SD local
SE mean

m m cmVcm'

0.000 0.000 0.221 0.216 0.0155 0.0128 0.216
6.250 0.000 0.235 0.220 0.0137 0.0123 0.220

12.500 0 000 0.243 0.219 0.0094 0.0093 0.224
18.750 _ 0.225 0.232 0.0117 0.0115 0.232
25.000 00 0.244 0.232 0.0120 0.0118 0.234
37.500 90 0.241 0.239 0.0144 0.0122 0.239
10.938 ._.125 0.204 0.236 0.0076 0.0076 0.233
17.188 3.125 0.233 0.234 0.0109 0.0109 0.235
23.438 3.125 0.229 0.241 0.0117 0.0117 0.239
29.688 3.125 0.240 0.242 0.0129 0.0121 0.242

6.250 6.250 0.230 0.232 0.0136 0.0128 0.232
34.375 6.250 0.259 0.243 0.0129 0.0117 0.243
17.188 9.375 0.246 0.245 0.0121 0.0118 0.245
12.500 12.500 0.250 0.245 0.0131 0.0128 0.245

14.063 53.125 0.314 0.294 0.0149 0.0150 0.290
3.125 56.250 0.299 0.290 0.0150 0.0141 0.290

18.750 56.250 0.269 0.293 0.0144 0.0148 0.286
21.875 56.250 0.308 0.273 0.0149 0.0153 0.277

12.500 62.500 0.291 0.288 0.0133 0.0142 0.293
15.625 62.500 0.294 0.293 0.0138 0.0142 0.292
10.938 65.625 0.267 0.294 0.0134 0.0135 0.294
3.125 68.750 0.292 0.290 0.0154 0.0149 0.292

18.750 68.750 0.302 0.286 0.0162 0.0166 0.283
21.875 68.750 0.289 0.285 0.0166 0.0170 0.280
34.375 68.750 0.234 0.263 0.0176 0.0159 0.263

1.563 71.875 0.287 0.293 0.0147 0.0149 0.293
7.813 71.875 0.303 0.290 0.0158 0.0147 0.290

14.063 71.875 0.300 0.291 0.0166 0.0166 0.287
29.688 71.875 0.286 0.264 0.0180 0.0166 0.264

0.000 75.000 0.296 0.289 0.0167 0.0149 0.290
12.500 75.000 0.305 0.289 0.0168 0.0163 0.286
25.000 75.000 0.280 0.274 0.0184 0.0170 0.274
37.500 75.000 0.255 0.256 0.0220 0.0179 0.256
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x, y and variate values z, values of Z will be predicted at points
not necessarily covered lay the original data. Best linear unbiased
estimates are obtained by the procedure known as kri_in_.

The background to the theory is given in an earlier section (page
4,5). The program implements this theory for any given mean model
and co-variance parameter a. In addition, it requires specification
of neighborhood size. Note the following necessary inequalities.

n_>ng_>m+l.

The program works by choosing a subset of the data, namely points
in the neighborhood of the prediction point (x*,y*), and then mak-
ing predictions from this neighborhood. Each time the prediction point
changes, a new neighborhood is defined and the process repeated.
It may happen that two neighborhoods coincide, but the program does
not take advantage of this possibility.

It should be noted that, when a prediction point coincides with an

observed point, the kriged prediction value equals the observed value.
If smoother plots are required, which can be justified on the grounds

of the presence of a "nugget" variance, the smoothing parameter,
k, can be set non-zero, but now the kriged and observed values differ.

Assume that prediction of water content values at 400 regularly

spaced points on a grid covering the entire field is desired. This can
be accomplished as follows:

(1) Store 6 20 3 0 in file TEMP__PAR. Note that a=6, ng=20,
m = 3, and k = 0 are exactly the same values as those used in the earlier

program CROSSK.

(2) Store [x y z D] in file TEMP__AIN. Note that these also are

exactly the same values as those stored in this file for both earlier

programs.

(3) Store the array [x* y* D*], made up of the 400 prediction

coordinates and corresponding design matrix, on the file
TEMP__COR.

4) Run the program KRIG and examine the file TEMP__OUT for
the output. Appendix table 9 lists part of this output. One would nor-
mally use this output to create a contour plot, for example by using
a package such as PLOT88 (Plotworks, Inc., La Jolla, CA
92037-0635). Appendix figure 4 gives such a graphical display for the

predicted values, while Appendix figure 5 gives a similar display of
the prediction standard errors.
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Developing and Using a Kriging Model for Clay Content

The reason for developing a kriging model for clay is that such a
model is needed later in the co-kriging of water content. The percen-
tage clay at 80 cm was chosen as the variable of interest since it is

closely correlated with water content and is a physical property of
the soil which hardly changes over time.

Using Program AX to Find the Best Clay Model

The sequence of models, namely the stationary, linear and quad-
ratic drift model, with c_varying in value from 4 m to 13 m, was fitted

to determine the best value for or. Appendix table 10 shows part of
the output from the fitting of a linear drift model. The same results

are depicted graphically in Appendix figure 6. From these results,
depending heavily on the inter-quartile range, we chose a value for

Q
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• in I I I I00.__0 7.50 15.O0 22.50 30.O0 37.50

X, m

APPENDIXFIGURE 4. Kriging estimates of soil water content using a linear drift model.
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Appendix Table 9. Kriging estimates of water content using a linear drift model, with
parameter values _t=6, ng=20, m=3, and k=0.

x y _ prediction local conditional local
SE SD mean

m m cmVcm'

0.000 0.000 0.221 0.00000 0.01271 0.219
0.000 3.215 0.223 0.01404 0.01366 0.222

0.000 6.250 0.227 0.01528 0.01366 0.227
0.000 9.375 0.232 0.01478 0.01346 0.232
0.000 12.500 0.237 0.01466 0.01346 0.237
0.000 15.625 0.242 0.01482 0.01370 0.242
0.000 i 8.750 0.245 0.01389 0.01365 0.248
0.000 21.875 0.252 0.01349 0.01365 0.253

0.000 25.000 0.256 0.00000 0.01452 0.253
0.000 28.125 0.258 0.01269 0.01281 0.256

37.500 15.625 0.252 0.01696 0.01549 0.252
37.500 18.750 0.255 0.01697 0.01549 0.255
37.500 21.875 0.249 0.01480 0.01481 0.247
37.500 25.000 0.256 0.00000 0.01363 0.248
37.500 28.125 0.251 0.01403 0.01405 0.249
37.500 31.250 0.251 0.01537 0.01412 0.251
37.500 34.375 0.251 0.01569 0.01433 0.25 I
37.500 37.500 0.250 0.01549 0.01402 0.250
37.500 40.625 0.247 0.01719 0.01566 0.247
37.500 43.750 0.247 0.01608 0.01469 0.247

37.500 46.875 0.245 0.01466 0.01463 0.248
37.500 50.000 0.239 0.00000 0.01488 0.249
37.500 53.125 0.246 0.01493 0.01488 0.249
37.500 56.250 0.247 0.01605 0.01453 0.247
37.500 59.375 0.247 0.01601 0.01453 0.247
37.500 62.500 0.250 0.01885 0.01706 0.250
37.500 65.625 0.248 0.01849 0.01699 0.250
37.500 68.750 0.245 0.01759 0.01706 0.252
37.500 71.875 0.25 ! 0.01723 0.01706 0.253
37.500 75.000 0.255 0.00000 0.01706 0.253
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Appendix Table 10. Output program AX when fitting a linear drift model to clay content.

Rank Mean Mean I.Q.R. I.D.R.
ot

means SS(resid) Abs(resid)

m (pet.) 2 pet. pet. pet.

4.0 9.12 10.92 2.43 3.43 8.19
4.5 9.17 I1.04 2.43 3.41 8.50
5.0 9.20 I 1.22 2.43 3.26 9.01
5.5 9.25 il.44 2.44 3.17 9.12
6.0 9.56 I 1.72 2.47 3. I 1 9.14
6.5 9.92 12.07 2.50 3.08 9.16
7.0 10.10 12.42 2.53 3.13 9.20
7.5 9.98 12.74 2.55 3.20 9.22
8.0 9.53 13.00 2.56 3.12 9.28
8.5 9.05 13.22 2.56 3.92 9.58
9.0 8.44 13.43 2.57 2.79 9.88
9.5 8.22 13.66 2.59 2.64 10.15

10.0 8.76 13.92 2.63 2.69 10.40
10.5 9.61 14.25 2.67 2.90 10.45
I 1.0 10.39 14.66 2.72 3.08 10.S!
! 1.5 11.22 15.17 2.80 3.26 10.66
12.0 12.24 15.68 2.88 3.46 10.76

12.5 12.85 16.15 2.95 3.77 10.87
13.0 13.39 16.59 3.00 4.40 10.96

Percentage of worst value

4.0 68.10 65.83 80.93 84.77 74.77

4.5 68.48 66.55 80.93 84.44 77.60
5.0 68.73 67.62 80.95 80.68 82.80
5.5 69. I1 68.96 82.34 78.40 83.27
6.0 71.39 70.62 82.17 77.05 83.41
6.5 74.05 72.74 83.33 76.08 83.57
7.0 75.44 74.86 84.30 77.39 83.95
7.5 74.56 76.77 84.93 79.16 84.16
8.0 71.14 78.35 85.20 77.23 84.70
8.5 67.59 79.71 85.22 72.26 87.41
9.0 63.04 80.98 85.53 68.92 90.16
9.5 61.39 82.31 86.24 65.26 92.64

!0.0 65.44 83.89 87.45 66.47 94.92
10.5 71.77 85.88 88.90 71.70 95.36
11.0 77.59 88.38 90.73 76.18 95.91
l 1.5 83.80 91.45 93.21 80.65 97.28
12.0 91.39 94.50 95.80 85.49 98.22
12.5 95.95 97.36 98.06 93.31 99.15

13.0 lO0.O0 100.00 100.00 I00.00 100.00
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ot of 9. Analysis of all three models reveals that the linear drift model
is to be preferred to either a stationary or quadratic model. Appen-
dix table 11 summarizes some of these results.

Using Program CROSSK to Validate the Given Clay Model

The given model is that of linear drift with _ = 9. The procedure
of validation is an exact repetition of that for the water model. Part
of the output is shown in Appendix table 12. It is important to store
the cross-validated residuals as these are needed in the co-kriging anal-
ysis to come.

Using Program KRIG to Predict Clay Values

The input requirements reflect an exact repetition of those for the
water model. Part of the output is shown in Appendix table 13.

Co-kriging Water with Clay

To run the co-kriging program, the best kriging models for clay
and water individually must be known. These models were determined
in sections "Developing and Using a Kriging Model for Water Con-
tent" and "Development and Using a Kriging Model for Clay Con-
tent." In addition, the variances of the cross-validated residuals for
clay and for water and the correlations between these two sets of residu-
als are required. Appendix table 14 lists these residuals for the 58

Appendix Table 11. Measures of deviation of cross-validated residuals for
three different drift models on clay content.

¢_ Sum of squared deviations Inter-quartile range
m (pet.)-" pet.

s L q s L q
4.0 695.01 644.31 722.67 3.64 3.43 3.88
4.5 695.38 651.37 736.38 3.56 3.41 3.94
5.0 698.57 661.89 753.65 3.6t 3.26 4.06
5.5 704.55 674.96 772,92 3.63 3.17 4.07
6.0 713.39 691.20 795.31 3.58 3.11 4.18
6.5 724.80 711.97 823.15 3.60 3.08 4.24
7.0 734.85 732.74 850.63 3.38 3.13 4.08
7.5 742.81 751.81 876.29 3.04 3.20 4.06
8.0 748.43 766.91 899.74 2.87 3.12 3.98
8.5 753.00 780.21 921.54 2.78 2.92 3.85
9.0 758.83 792.65 942.50 2.87 2.79 3.83
9.5 767.98 805.65 963.53 3.00 2.64 3.87

10.0 781.32 821.13 986.58 3.04 2.69 3.89
10.5 799.33 840.61 1013.37 3.01 2.90 4.00
11.0 822.97 865.11 1045.05 2.99 3.08 4.13
11.5 852.65 895.14 1082.17 3.14 3.26 4.31
12.0 882.10 924.99 1118.31 3.36 3.46 4.52
12.5 909.47 952.97 1151.79 3.59 3.77 4.75
13.0 934.47 978.80 1182.76 3.76 4.40 4.96

S = stationary model, L = linear drift model, and Q = quadratic drift model.
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locations where both water and clay were recorded. An analysis rev-

eals the following:
variance(water residuals) = a s = 0.0002116,
variance(clay residuals) = a_ = 13.36, and the
correlation coefficient = p = 0.6273.

Using Program COK to Predict Water Values by Co-Kriging

We will make predictions at the same 400 regularly spaced grid

points used earlier in kriging.
(1) Store the following parameter values on file TEMP__PAR:

6.0 9.0 0.6273 0.0002116 13.36 3 3 20 20 0.0.

Appendix Table 12. Output for cross-validation of linear drift model
for clay content, with parameter values a =9, ng = 20, m = 3, and k =0.

x y z _ prediction local SD local mean
SE

m m pct.

0.000 0.000 15.4 16.66 3.097 2.549 16.29
6.250 0.000 19.2 15.72 2.479 2.425 16.12

12.500 0.000 17.6 15.26 1.898 2.201 16.81
18.750 0.000 17.7 17.71 2.139 2.389 17.30
25.000 0.000 17.4 16.92 2.198 2.422 17.61
37.500 0.000 17.7 18.49 2.932 2.420 18.51
10.938 3.125 13.4 18.25 1.484 1.707 17.94
17.188 3.125 18.4 17.97 2.081 2.386 18.03
23.438 3.125 17.3 18.33 2.077 2.340 18.55
29.688 3.125 17.1 18.65 2.401 2.396 18.89

6.250 6.250 18.1 16.81 2.611 2.543 17.47
34.375 6.250 19.4 19.45 2.581 2.548 19.81
17.188 9.375 21.5 20.13 2.390 2.401 19.86
12.500 12.500 20.7 20.02 2.595 2.644 19.89

14.063 53.125 26.8 27.59 3.110 3.570 26.01
3.125 56.250 26.0 25.29 3.962 3.842 25.76

18.750 56.250 23.6 28.83 2.758 3.273 25.79
21.875 56.250 32.9 23.99 3.155 3.625 24.24
12.500 62.500 22.8 23.78 2.870 3.640 24.85

15.625 62.500 24.3 24.01 3.318 3.826 25.56
10.938 65.625 22.0 23.95 3.575 3.966 25.06
3.125 68.750 28.2 21.76 3.292 3.614 23.78

18.750 68.750 25.6 24.10 3.879 4.589 23.95
21.875 68.750 22.7 23.79 3.968 4.558 23.18
34.275 68.750 16.0 24.09 4.407 3.828 22.88

1.563 71.875 20.7 27.03 2.781 3.503 24.92
7.813 71.875 23.5 24.81 4.089 4.1t9 24.55

14.063 71.875 26.5 25.12 4.009 4.597 23.89
29.688 71.875 29.5 19.42 3.441 3.414 20.23

0.000 75.000 26.9 19.26 3.780 3.710 20.61
12.500 75.000 25.7 24.33 4.230 4.599 23.35
25.000 75.000 20.1 24.39 4.664 4.446 23.00
37.500 75.000 19.8 18.68 5.139 4.181 19.08
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Appendix Table 13 Kriging estimates of clay content using a linear drift model,
with parameter values tx = 9, n$ = 20, m = 3, and k = 0.

x y _ prediction local conditional local
SE SD mean

m m pet

0.000 0.000 15.4 0.00 2.51 16.19
0.000 3.125 16.2 2.86 3.18 16.25
0.000 6.250 17.0 3.42 3.18 16.91
0.000 9.375 17.6 3.51 3.17 17.48
0.000 12.500 18.3 3.48 3.17 18.14
0.000 15.625 19.9 3.28 3.22 19.32
0.000 18.750 20.8 2.91 3.25 20.37
0.000 21.875 20.3 2.74 3.34 20.69
0.000 25.000 19.2 0.00 3.40 20.37
0.000 28.125 20.9 2.79 3.39 21.15

37.500 15.625 22.3 2.65 2.37 22.26
37.500 18.750 22.8 2.58 2.37 22.97

37.500 21.875 21.6 2.30 2.57 21.24
37.500 25.000 22.5 0.00 2.55 21.67
37.500 28.125 22.4 2.37 2.65 21.93

37. 500 3 !. 250 22.7 2.97 2.78 22.60
37.500 34.375 23. I 3.95 3.55 23.10
37.500 37.500 24. ! 4.10 3.64 24.14
37.500 40.625 22.4 4.61 4.14 22.40
37.500 43.750 22.5 4.45 4.11 22.10
37.500 46.875 23.2 3.59 4.00 21.95
37.500 50.000 24.4 0.00 4.23 21.66
37.500 53.125 22.8 3.79 4.23 21.47
37.500 56.250 22.4 4.65 4.25 22.15
37.500 59.375 21.8 4.79 4.25 21.81
37.500 62.500 20.8 4.64 4.18 21.34
37.500 65.625 18.9 4.34 4.22 21.20
37. 500 68. 750 17.3 3.76 4.17 20.72
37.500 71.875 18.4 3.46 4.17 20.18
37.500 75.000 19.8 0.120 4.08 19.98

The meaning of each component of this parameter vector is explain-
ed in Appendix table 2 (under program COK on page 16).

(2) Store the array [x y z (water) D] on file TEMP__AIN.
(3) Store the array [x y z (clay) D] on file TEMP__BIN. Note

that these file contents are exactly the same as those originally
stored on file TEMP.__AIN for the earlier kriging analyses.

(4) Store the array [x y* D*], made up of the 400 prediction
coordinates and corresponding design matrix on file
TEMP__COR. Note that this is identical to the contents stored

in the same file earlier when using program KRIG.
(5) Run the program COK and examine the output on file

TEMP__OUT. Appendix table 15 lists part of this output.
Appendix figures 7 and 8 give the contour plots for predicted
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Appendix Table 14. Cross-validated residuals from the kriging models
on water and clay respectively.

water clay water clay
cm_/cm J pet. cm3/cm _ pet.

0.0041 -1.2574 0.0170 5.5313
0.0157 3.4809 0.0090 -2.3833
0.0245 2.3384 -0.0015 - 1.8158

-0.0065 -0.0069 0.0125 2.3710
0.0112 0.4754 -0.0199 0.0764
0.0023 -0.7857 0.0116 5.1165

-0.0325 -4.8478 -0.0035 0.2382
-0.0013 0.4267 0.0149 -3.5636
-0.0119 -1.0305 -0.0117 3.541 I
-0.0019 -1.5540 0.0105 -1.7545
-0.0015 1.2948 0.0201 -0.7928
0.0153 -0.0457 0.0089 0.7074
0.0014 1.3742 -0.0246 -5.2342
0.0047 0.6846 0.0348 8.9130
0.0117 4.5687 0.0034 -0.9759

-0.0059 -0.9914 0.0008 0.2948
-0.0094 1.8468 -0.0265 - 1.9522
0.0104 -1.1814 0.0018 6.4434
0.0031 0.0068 0.0162 1.4985
0.0047 -0.5285 0.0038 -I .0939
0.0102 -0.0624 -0.0291 -8.0895
0.0079 -0.1707 -0.0066 -6.3272
0.0089 0.9369 0.0128 -1.3082

-0.0321 -8.0718 0.0086 1.3795
0.0064 -0.4702 0.0213 10.0780
0.0210 7.3490 0.0069 7.6365
0.0186 3.8222 0.0163 1.3736
0.0127 0.4496 0.0060 -4.2853
0.0113 0.0092 -0.0002 1.1182

The 58 observations relate to those 58 places where both variables were recorded.

water and prediction standard errors, respectl_,el_¢, proffuceff by

the package PLOTT88.
Using Program CROSSC to Validate The CO--KRIGED Model.

(1) The contents of files TEMP__PAR , TEMP__AIN and
TEMP BIN remain exactly the same as those used in the

previous program, COK.
(2) Run program CROSSC and examine file TEMP___OUT for

the output. Appendix table 16 lists part of that output. It is
immediately apparent, both from the smaller residuals and smaller
prediction standard errors, that the co-kriged predictions are
considerably more precise than those based on kriging alone.

Finding an Optimal Sampling Strategy
The program SAM is used to answer the following question. Re-

quiting minimal loss of information, which locations should be selected
to measure water content values at only 16 sites in the future? There
are 60 locations that were used in the past; call these the future potential

sample points. Now define 18 prediction points, none of which should
coincide with the potential sample points. The idea is to choose a subset
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o e 16 points from the full set of 60 potential sample points in such
a way that the maximum prediction standard error of all 18 predic-
tion points is minimized. The actual technique used in the program
is to calculate the prediction SE's for the closest 6 prediction points
to any potential sample point and hence the average of these 6 points.
This average SE is used as the criterion for retaining a potential sam-
ple point; those 16 points having largest average SE's are retained.

Appendix figure 9 show_ the layout of the potential sample points,
the prediction points, and the finally selected optimal 16 points. In
using program SAM we make use of our knowledge of the best co-
kriging model for water and clay.

Appendix Table 15. Output of co-kriging water and clay with linear drif models. Parameter

values are o_ (water) = 6.0, c_ (clay) = 9.0, p = 0.63, o_(water = 0.0002116,
o:(clay) = 13.40, m(water) = 3, m(clay) = 3, ng (water) = 20, ng(clay) = 20, and k = 0.0

x y _ prediction local local
v,ater SE conditional mean

water SD water
water

m m cm3/cm _

0.0000 0.0000 0.2205 0.0000 0.0127 0.2189
0.0000 3.1250 0.2230 0.0140 0.0137 0.2225
0.0000 6.2500 0.2273 0.0153 0.0037 0.2273
0.0000 9.3750 0.2323 0.0148 0.0135 0.2323
0.0000 12.5000 0.2373 0.0147 0.0135 0.2373
0.0000 15.6250 0.2434 0.0148 0.0137 0.2427
0.0000 18.7500 0.2471 0.0138 0.0136 0.2481
0.0000 21.8750 0.2517 0.0135 0.0137 0.2522
0.0000 25.0000 0.2558 0.0000 0.0146 0.2518
0.0000 28.1250 0.2573 0.0127 0.0128 0.2557

37.5000 15.6250 0.2536 0.0170 0.0156 0.2536

37.5000 18.7500 0.2564 0.0170 0.0156 0.2564
37.5000 21.8750 0.2496 0.0148 0.0148 0.2476
37.5000 25.0000 0.2560 0.0000 0.0137 0.2490
37.5000 28.1250 0.2522 0.0140 0.0141 0.2498
37.5000 31.2500 0.2523 0.0153 0.0142 0.2523
37.5000 34.3750 0.2520 0.0157 0.0144 0.2520
37.5000 37.5000 0.2518 0.0155 0.0141 0.2518
37.5000 40.6250 0.2485 0.0172 0.0157 0.2485
37.5000 43.7500 0.2480 0.0161 0.0147 0.2480
37.5000 46.8750 0.2477 0.0146 0.0146 0.2484
37.5000 50.0000 0.2389 0.0000 0.0149 0.2480
37.5000 53.1250 0.2480 0.0149 0.0149 0.2485
37.5000 56.2500 0.2473 0.0161 0.0146 0.2473
37.5000 59.3750 0.2481 0.0160 0.0146 0.2481

37.5000 62.5000 0.2491 0.0189 0.0171 0.2491
37.5000 65.6250 0.2473 0.0185 0.0170 0.2507
37.5000 68.7500 0.2423 0.0176 0.0171 0.2504
37.5000 71.8750 0.2485 0.0172 0.0171 0.2507
37.5000 75.0000 0.2554 0.0000 0.0171 0.2524
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Appendix Table 16. Output of cross-validation of co-kriged model of water and clay. Parameter
values are a (water) = 6.0, a (clay) = 9.0, P = 0.63, a 2 (water) = 0.0002116,

e 2(clay) = 13.40, m (water) = 3, m (clay) = 3, ng (water) = 20, ng (clay) = 20, and k = 0.0

prediction local local
x y z _ SE conditional mean

water water water SD water
water

m m cm I/cm3

0.0000 0.0000 0.2205 0.2139 0.0123 0.0128 0.2157
6.2500 0.0000 0.2352 0.2308 0.0102 0.0124 0.2219

12.5000 0.0000 0.2430 0.2243 0.0070 0.0093 0.2248
18.7500 0.0000 0.2251 0.2340 0.0089 0.0116 0.2323
25.0000 0.0000 0.2436 0.2323 0.0092 0.0119 0.2341
37.5000 0.0000 0.2410 0.2383 0.0115 0.0123 0.2387
10.9375 3.1250 0.2038 0.2219 0.0057 0.0076 0.2323
17.1875 3.1250 0.2328 0.2330 0.0081 0.0109 0.2352

23.4375 3.1250 0.2290 0.2375 0.0090 0.0118 0.2393
29.6875 3.1250 0.2400 0.2394 0.0099 0.0121 0.2417

6.2500 6.2500 0.2301 0.2326 0.0105 0.0128 0.2319
34.3750 6.2500 0.2580 0.2450 0.0100 0.0118 0.2443
17.1875 9.3750 0.2462 0.2500 0.0094 0.0118 0.2457
12.5000 12.5000 0.2499 0.2477 0.0101 0.0128 0.2454

14.0625 53.i250 0.3"136 0.2_)12 010110 0.0150 0.2894
3.1250 56.2500 0.2991 0.2917 0.0114 0.0141 0.2906

18.7500 56.2500 0.2691 0.2828 0.0106 0.0148 0.2853
21.8750 56.2500 0.3077 0.2957 0.0114 0.0153 0.2776
12.5000 62.5000 0.2912 0.2840 0.0101 0.0142 0.2926
15.6250 62.5000 0.2936 0.2907 0.0104 0.0142 0.2915
10.9375 65.6250 0.2672 0.2878 0.0103 0.0135 0.2941

3.1250 68.7500 0.2922 0.3082 0.0117 0.0150 0.2949
18.7500 68.7500 0.3023 0.2915 0.0120 0.0166 0.2836
21.8750 68.7500 0.2893 0.2839 0.0126 0.0170 0.2800
34.3750 68.7500 0.2341 0.2413 0.0134 0.0160 0.2588

1.5625 71.8750 0.2868 0.2749 0.0110 0.0149 0.2909
7.8125 71.8750 0.3033 0.2882 0.0116 0.0147 0.2906

14.0625 71.8750 0.2999 0.2979 0.0123 0.0166 0.2879
29.6875 71.8750 0.2856 0.2923 0.0135 0.0167 0.2686
0.0000 75.0000 0.2957 0.3054 0.0129 0.0150 0.2952

12.5000 75.0000 0.3053 0.2944 0.0128 0.0163 0.2869

25.0000 75.0000 0.2800 0.2639 0.0141 0.0170 0.2725
37.5000 75.0000 0.2554 0.2554 0.0172 0.0179 0.2554

(1)
TEMP PAR:

o4water) 6.0
c_(clay) 9.0
p 0.6273
o2(water) 0.0002116
a2(clay) 13.36
m (water) 3

m(clay) 3

Store the following parameter vector (as a row vector) in file
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ng(water) 12 (must be less than 18)
ng(clay) 20
maxout 20 (maximum number of iterations)

(2) Store [AY D], the coordinates and design matrix for the potential
sample points, in file TEMP AIN. Note that the design matrix D

corresponds to the linear drift model. Also note that no knowledge
of the observed values for water content at these sites is needed.

(3) Store [x y z(clay) D] in the file TEMP_BIN. Note that these
stored values are identical to those used in the earlier co-kriging analy-
sis of water with clay.

(4) Store [x* y* D*], the coordinates and design matrix for the 18

[] 2 [] [] [] 2

D1X [] _ [] X D1

[] []

[] X [] [] X
[] []

• • •
[] [] []

[] X X []

2
[] [] B]

2
B1X 2 X X

[] [] 2 2 2 2
• • 2 [] O1 D1 O1

[]
[] X 2 X X

_]
_I _I

I
[] •X X []

[] [] _1 _2 2

• Q2 • [] 01 01

E
0
0
r----

50 m

APPENDIXFIGURE9. Lay-out of the potential sample points (solid circles and squares), the
prediction points (crosses), the selected optimal 16 points after one run (1), and after a
second run (2).
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prediction points, in file TEMP_COR. These values are shown in
Appendix table 17.

(5) Run the program by entering: RUN SAM. We are now in an
interactive mode and the command "Enter the required sample size,

ns. Note ns = 0 stops the program," will be displayed on the screen.

By entering 16, the program will begin the optimization process, search-
ing for an optimal 16 points. It starts by simply taking the first 16
potential sample points and then runs through 20 iterative cycles (20
being the specified value of the parameter "maxout"), in each cycle
replacing one of the 16 points by a better point from the remaining
44. At the end of each cycle it prints out the details of the points added

and dropped. When the 20 cycles are complete (or earlier if no
improvement can be found), the earlier question is repeated on the
screen. If a non-zero value for ns is entered the whole procedure is

repeated but with the important difference that it starts with the 16
points from the final stage of the earlier run.

Appendix tables 18, 19, and 20 give the output, while Appendix
figure 9 illustrates the positions of the best 16 points. Note that after

cycle number 14 the program keeps repeating the same exchange
between points (34.375, 68.75) and (3.125, 43.75). At this stage the
current run is unable to effect any improvement. The final arrange-
ment arrived at can never be guaranteed to be best and a good idea

in practice is to run an extra sequence of cycles with a larger ns
value and then revert to the real target sample size. This is easily

Appendix Table 17. The input file TEMP__COR required by program SAM
to optimize water sampling

x Y x Y
m m m m

6.250 6.250
18.750 6.250
31.250 6,250

6.250 18.750
18.750 18.750
31.250 18.750
6.250 31.250

18.750 31.250
31.250 31.250
6.250 43.750

18.750 43.750
31.250 43.750
6.250 56.250

18.750 56.250
31.250 56.250

6.250 68.750
18.750 68.750
31.250 68.750

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

6.250 6.250
18.750 6.250
31.250 6.25O

6.250 18.750
18.750 18.750
31.250 18.750
6.250 31.250

18.750 31.250
31.250 31.250
6.250 43.750

18.750 43.750
31.250 43.750

6.250 56.25O
18.750 56.250
31.250 56,250

6.250 68,750
18.750 68.750
31.250 68.750
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achieved by entering the required non-zero ns value at each stage
when the computer screen requests such input. In fact, Apendix
figure 9 shows two sets of "best" 16 points. The program was run
once as previously reported and then re-run with inproved starting
values to eventually yield an even better set of points. Note also
that the program is very computer-intensive and it is more efficent

to run several sequences of cycles than one long sequence with a
high value of the parameter maxout. Finally, note that a different
set of prediction points will yield a different (often markedly so)
set of optimal sampling sites.

Appendix Table 18. Optimization of sample locations for water content determination.
Output from program SAM - part t. Parameter values are _ (water) = 6.0, _ (clay) - 9.0,

p = 0.63, o 2 (water) = 0.0002116, a_(clay) : 13.36, m (water) = 3, m (clay) - 3,
ng (water) = 12, ng (clay) = 20, maxout = 20.

Cycle number sample site added sample site dropped

x y x y
m m m m

I 34.3750 68.7500 6.2500 0.0000
2 31.2500 25.0000 10.9380 3.1250
3 3.1250 68.7500 0.0000 0.0000
4 3.1250 31.2500 12.5000 0.0000
5 37.5000 25.0000 6.2500 6.2500
6 25.0000 37.5000 17.1880 3.1250
7 31.2500 43.7500 29.6880 3.1250
8 3.1250 43.7500 31.2500 43.7500
9 37.5000 50.0000 18.7500 0.0000

I0 25.0000 25.0000 3.1250 43.7500
11 3.1250 43.7500 34.3750 6.2500
12 31.2500 50.0000 3.1250 43.7500
13 3.1250 43.7500 34.3750 68.7500
14 34.3750 68.7500 3.1250 43.7500

15 3.1250 43.7500 34.3750 68.7500
16 34.3750 68.7500 3.1250 43.7500

17 3.1250 43.7500 34.3750 68.7500
18 34.3750 68.7500 3.1250 43.7500
19 3.1250 43.7500 34.3750 68.7500
20 34.3750 68.7500 3.1250 43.7500
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Appendix Table 19. Optimization of sample locations for water content determination.
Output from program SAM - part 2.

x y Average SE
m m cm ,/cm_

The best subset of sample points with their average SE's
3.1250 68.7500 0.0150

34.3750 68.7500 0.0163
3.1250 31.2500 0.0146

37.5000 50.0000 0.0157
25.0000 0.0000 0.0147
37.5000 0.0000 0.0149
31.2500 25.0000 0.0154
25.0000 37.5000 0.0153
23.4380 3.1250 0.0147
25.0000 25.0000 0.0152

37.5000 25.0000 0.0154
31.2500 50.0000 0.0157
17.1880 9.3750 0.0146
12.5000 12.5000 0.0146
25.0000 12.5000 0.0148

7.8130 15.6250 0.0145

The subset of unused sample points with their average SE's
3,1250 18.7500 0.0145
4.6880 21.8750 0.0146
0,0000 25.0000 0.0145

12.5000 25.0000 0.0148
18.7500 25.0000 0.0151
34.3750 6.2500 0.0149
10.9380 3.1250 0.0145

6.2500 6.2500 0.0145
4.6880 28.1250 0.0146

10.9380 28.1250 0.0147
12.5000 0.0000 0.0146
9.3750 37.5000 0.0147

12.5000 37.5000 0.0147
17.1880 3.1250 0.0146
31.2500 43.7500 0.0153
29.6880 3.1250 0.0148

7.8130 46.8750 0.0145
14.0630 46.8750 0.0147
20.3130 46.8750 0.0149

0.0000 50.0000 0.0146

12.5000 50.0000 0.0146
25.0000 50.0000 0.0152

3.1250 43.7500 0.0145
18.7500 0.0000 0.0146
7.8130 53.1250 0.0148

14.0630 53.1250 0.0145
3.1250 56.2500 0.0149

18.7500 56.2500 0.0150
21.8750 56.2500 0.0146
12.5000 62.5000 0.0149
15.6250 62.5000 0.0148
10.9380 65.6250 0.0150
0.0(0 0.0000 0.0144

18.7500 68.7500 0.0151
21.8750 68.7500 0.0150

6.2500 0.0000 0.0145
[.5630 71.8750 0.0149
7.8130 71.8750 0.0151

14.0630 71.8750 0.0150

Continucd
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Appendix Table 19 (continued). Optimization of sample locations for water content

determination. Output from program SAM - part 2.

x y Average SE
m m cm'/cm'

The best subset of sample points with their average SE's
29.6880 71.8750 0.0161

0.0000 75.0000 0.0149
12.5000 75.0000 0.0151
25.0000 75.0000 0.0154
37.5000 75.0000 0.0158

Appendix Table 20. Optimization of sample locations for water content
determination. Output from program SAM - part 3. The prediction SE's.

x y Initial SE Final SE
m m cm3/cm _ cmVcm 3

6.2500 6.2500 0.0000 0.0140
18.7500 6.2500 0.0139 0.0144
31.2500 6.2500 0.0139 0.0148
6.2500 18.7500 0.0163 0.0145

18.7500 18.7500 0.0177 0.015 I
31.2500 18.7500 0.0195 0.0155
6.2500 31.2500 0.0244 0.0144

18.7500 31.2500 0.0262 0.0151
3 I. 2500 31.2500 0.0295 0.0 i 54
6.2500 43.7500 0.0348 0.0142

18.7500 43.7500 0.0375 0.0149
31.2500 43.7500 0.0424 0.0158

6.2500 56.2500 0.0456 0.0155

18.7500 56.2500 0.0475 0.0131
31.2500 56.2500 0.0540 0.0166

6.2500 68.7500 0.0556 O.Ol51

18.7500 68.7500 0.0588 0.0143
31.2500 68.7500 0,0675 0.0173
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